source: trunk/third/perl/pod/perlsub.pod @ 14545

Revision 14545, 46.2 KB checked in by ghudson, 24 years ago (diff)
This commit was generated by cvs2svn to compensate for changes in r14544, which included commits to RCS files with non-trunk default branches.
Line 
1=head1 NAME
2
3perlsub - Perl subroutines
4
5=head1 SYNOPSIS
6
7To declare subroutines:
8
9    sub NAME;                     # A "forward" declaration.
10    sub NAME(PROTO);              #  ditto, but with prototypes
11    sub NAME : ATTRS;             #  with attributes
12    sub NAME(PROTO) : ATTRS;      #  with attributes and prototypes
13
14    sub NAME BLOCK                # A declaration and a definition.
15    sub NAME(PROTO) BLOCK         #  ditto, but with prototypes
16    sub NAME : ATTRS BLOCK        #  with attributes
17    sub NAME(PROTO) : ATTRS BLOCK #  with prototypes and attributes
18
19To define an anonymous subroutine at runtime:
20
21    $subref = sub BLOCK;                 # no proto
22    $subref = sub (PROTO) BLOCK;         # with proto
23    $subref = sub : ATTRS BLOCK;         # with attributes
24    $subref = sub (PROTO) : ATTRS BLOCK; # with proto and attributes
25
26To import subroutines:
27
28    use MODULE qw(NAME1 NAME2 NAME3);
29
30To call subroutines:
31
32    NAME(LIST);    # & is optional with parentheses.
33    NAME LIST;     # Parentheses optional if predeclared/imported.
34    &NAME(LIST);   # Circumvent prototypes.
35    &NAME;         # Makes current @_ visible to called subroutine.
36
37=head1 DESCRIPTION
38
39Like many languages, Perl provides for user-defined subroutines.
40These may be located anywhere in the main program, loaded in from
41other files via the C<do>, C<require>, or C<use> keywords, or
42generated on the fly using C<eval> or anonymous subroutines (closures).
43You can even call a function indirectly using a variable containing
44its name or a CODE reference.
45
46The Perl model for function call and return values is simple: all
47functions are passed as parameters one single flat list of scalars, and
48all functions likewise return to their caller one single flat list of
49scalars.  Any arrays or hashes in these call and return lists will
50collapse, losing their identities--but you may always use
51pass-by-reference instead to avoid this.  Both call and return lists may
52contain as many or as few scalar elements as you'd like.  (Often a
53function without an explicit return statement is called a subroutine, but
54there's really no difference from Perl's perspective.)
55
56Any arguments passed in show up in the array C<@_>.  Therefore, if
57you called a function with two arguments, those would be stored in
58C<$_[0]> and C<$_[1]>.  The array C<@_> is a local array, but its
59elements are aliases for the actual scalar parameters.  In particular,
60if an element C<$_[0]> is updated, the corresponding argument is
61updated (or an error occurs if it is not updatable).  If an argument
62is an array or hash element which did not exist when the function
63was called, that element is created only when (and if) it is modified
64or a reference to it is taken.  (Some earlier versions of Perl
65created the element whether or not the element was assigned to.)
66Assigning to the whole array C<@_> removes that aliasing, and does
67not update any arguments.
68
69The return value of a subroutine is the value of the last expression
70evaluated.  More explicitly, a C<return> statement may be used to exit the
71subroutine, optionally specifying the returned value, which will be
72evaluated in the appropriate context (list, scalar, or void) depending
73on the context of the subroutine call.  If you specify no return value,
74the subroutine returns an empty list in list context, the undefined
75value in scalar context, or nothing in void context.  If you return
76one or more aggregates (arrays and hashes), these will be flattened
77together into one large indistinguishable list.
78
79Perl does not have named formal parameters.  In practice all you
80do is assign to a C<my()> list of these.  Variables that aren't
81declared to be private are global variables.  For gory details
82on creating private variables, see L<"Private Variables via my()">
83and L<"Temporary Values via local()">.  To create protected
84environments for a set of functions in a separate package (and
85probably a separate file), see L<perlmod/"Packages">.
86
87Example:
88
89    sub max {
90        my $max = shift(@_);
91        foreach $foo (@_) {
92            $max = $foo if $max < $foo;
93        }
94        return $max;
95    }
96    $bestday = max($mon,$tue,$wed,$thu,$fri);
97
98Example:
99
100    # get a line, combining continuation lines
101    #  that start with whitespace
102
103    sub get_line {
104        $thisline = $lookahead;  # global variables!
105        LINE: while (defined($lookahead = <STDIN>)) {
106            if ($lookahead =~ /^[ \t]/) {
107                $thisline .= $lookahead;
108            }
109            else {
110                last LINE;
111            }
112        }
113        return $thisline;
114    }
115
116    $lookahead = <STDIN>;       # get first line
117    while (defined($line = get_line())) {
118        ...
119    }
120
121Assigning to a list of private variables to name your arguments:
122
123    sub maybeset {
124        my($key, $value) = @_;
125        $Foo{$key} = $value unless $Foo{$key};
126    }
127
128Because the assignment copies the values, this also has the effect
129of turning call-by-reference into call-by-value.  Otherwise a
130function is free to do in-place modifications of C<@_> and change
131its caller's values.
132
133    upcase_in($v1, $v2);  # this changes $v1 and $v2
134    sub upcase_in {
135        for (@_) { tr/a-z/A-Z/ }
136    }
137
138You aren't allowed to modify constants in this way, of course.  If an
139argument were actually literal and you tried to change it, you'd take a
140(presumably fatal) exception.   For example, this won't work:
141
142    upcase_in("frederick");
143
144It would be much safer if the C<upcase_in()> function
145were written to return a copy of its parameters instead
146of changing them in place:
147
148    ($v3, $v4) = upcase($v1, $v2);  # this doesn't change $v1 and $v2
149    sub upcase {
150        return unless defined wantarray;  # void context, do nothing
151        my @parms = @_;
152        for (@parms) { tr/a-z/A-Z/ }
153        return wantarray ? @parms : $parms[0];
154    }
155
156Notice how this (unprototyped) function doesn't care whether it was
157passed real scalars or arrays.  Perl sees all arugments as one big,
158long, flat parameter list in C<@_>.  This is one area where
159Perl's simple argument-passing style shines.  The C<upcase()>
160function would work perfectly well without changing the C<upcase()>
161definition even if we fed it things like this:
162
163    @newlist   = upcase(@list1, @list2);
164    @newlist   = upcase( split /:/, $var );
165
166Do not, however, be tempted to do this:
167
168    (@a, @b)   = upcase(@list1, @list2);
169
170Like the flattened incoming parameter list, the return list is also
171flattened on return.  So all you have managed to do here is stored
172everything in C<@a> and made C<@b> an empty list.  See L<Pass by
173Reference> for alternatives.
174
175A subroutine may be called using an explicit C<&> prefix.  The
176C<&> is optional in modern Perl, as are parentheses if the
177subroutine has been predeclared.  The C<&> is I<not> optional
178when just naming the subroutine, such as when it's used as
179an argument to defined() or undef().  Nor is it optional when you
180want to do an indirect subroutine call with a subroutine name or
181reference using the C<&$subref()> or C<&{$subref}()> constructs,
182although the C<< $subref->() >> notation solves that problem.
183See L<perlref> for more about all that.
184
185Subroutines may be called recursively.  If a subroutine is called
186using the C<&> form, the argument list is optional, and if omitted,
187no C<@_> array is set up for the subroutine: the C<@_> array at the
188time of the call is visible to subroutine instead.  This is an
189efficiency mechanism that new users may wish to avoid.
190
191    &foo(1,2,3);        # pass three arguments
192    foo(1,2,3);         # the same
193
194    foo();              # pass a null list
195    &foo();             # the same
196
197    &foo;               # foo() get current args, like foo(@_) !!
198    foo;                # like foo() IFF sub foo predeclared, else "foo"
199
200Not only does the C<&> form make the argument list optional, it also
201disables any prototype checking on arguments you do provide.  This
202is partly for historical reasons, and partly for having a convenient way
203to cheat if you know what you're doing.  See L<Prototypes> below.
204
205Functions whose names are in all upper case are reserved to the Perl
206core, as are modules whose names are in all lower case.  A
207function in all capitals is a loosely-held convention meaning it
208will be called indirectly by the run-time system itself, usually
209due to a triggered event.  Functions that do special, pre-defined
210things include C<BEGIN>, C<CHECK>, C<INIT>, C<END>, C<AUTOLOAD>, and
211C<DESTROY>--plus all functions mentioned in L<perltie>.
212
213=head2 Private Variables via my()
214
215Synopsis:
216
217    my $foo;            # declare $foo lexically local
218    my (@wid, %get);    # declare list of variables local
219    my $foo = "flurp";  # declare $foo lexical, and init it
220    my @oof = @bar;     # declare @oof lexical, and init it
221    my $x : Foo = $y;   # similar, with an attribute applied
222
223B<WARNING>: The use of attribute lists on C<my> declarations is
224experimental.  This feature should not be relied upon.  It may
225change or disappear in future releases of Perl.  See L<attributes>.
226
227The C<my> operator declares the listed variables to be lexically
228confined to the enclosing block, conditional (C<if/unless/elsif/else>),
229loop (C<for/foreach/while/until/continue>), subroutine, C<eval>,
230or C<do/require/use>'d file.  If more than one value is listed, the
231list must be placed in parentheses.  All listed elements must be
232legal lvalues.  Only alphanumeric identifiers may be lexically
233scoped--magical built-ins like C<$/> must currently be C<local>ize
234with C<local> instead.
235
236Unlike dynamic variables created by the C<local> operator, lexical
237variables declared with C<my> are totally hidden from the outside
238world, including any called subroutines.  This is true if it's the
239same subroutine called from itself or elsewhere--every call gets
240its own copy.
241
242This doesn't mean that a C<my> variable declared in a statically
243enclosing lexical scope would be invisible.  Only dynamic scopes
244are cut off.   For example, the C<bumpx()> function below has access
245to the lexical $x variable because both the C<my> and the C<sub>
246occurred at the same scope, presumably file scope.
247
248    my $x = 10;
249    sub bumpx { $x++ }
250
251An C<eval()>, however, can see lexical variables of the scope it is
252being evaluated in, so long as the names aren't hidden by declarations within
253the C<eval()> itself.  See L<perlref>.
254
255The parameter list to my() may be assigned to if desired, which allows you
256to initialize your variables.  (If no initializer is given for a
257particular variable, it is created with the undefined value.)  Commonly
258this is used to name input parameters to a subroutine.  Examples:
259
260    $arg = "fred";        # "global" variable
261    $n = cube_root(27);
262    print "$arg thinks the root is $n\n";
263 fred thinks the root is 3
264
265    sub cube_root {
266        my $arg = shift;  # name doesn't matter
267        $arg **= 1/3;
268        return $arg;
269    }
270
271The C<my> is simply a modifier on something you might assign to.  So when
272you do assign to variables in its argument list, C<my> doesn't
273change whether those variables are viewed as a scalar or an array.  So
274
275    my ($foo) = <STDIN>;                # WRONG?
276    my @FOO = <STDIN>;
277
278both supply a list context to the right-hand side, while
279
280    my $foo = <STDIN>;
281
282supplies a scalar context.  But the following declares only one variable:
283
284    my $foo, $bar = 1;                  # WRONG
285
286That has the same effect as
287
288    my $foo;
289    $bar = 1;
290
291The declared variable is not introduced (is not visible) until after
292the current statement.  Thus,
293
294    my $x = $x;
295
296can be used to initialize a new $x with the value of the old $x, and
297the expression
298
299    my $x = 123 and $x == 123
300
301is false unless the old $x happened to have the value C<123>.
302
303Lexical scopes of control structures are not bounded precisely by the
304braces that delimit their controlled blocks; control expressions are
305part of that scope, too.  Thus in the loop
306
307    while (my $line = <>) {
308        $line = lc $line;
309    } continue {
310        print $line;
311    }
312
313the scope of $line extends from its declaration throughout the rest of
314the loop construct (including the C<continue> clause), but not beyond
315it.  Similarly, in the conditional
316
317    if ((my $answer = <STDIN>) =~ /^yes$/i) {
318        user_agrees();
319    } elsif ($answer =~ /^no$/i) {
320        user_disagrees();
321    } else {
322        chomp $answer;
323        die "'$answer' is neither 'yes' nor 'no'";
324    }
325
326the scope of $answer extends from its declaration through the rest
327of that conditional, including any C<elsif> and C<else> clauses,
328but not beyond it.
329
330None of the foregoing text applies to C<if/unless> or C<while/until>
331modifiers appended to simple statements.  Such modifiers are not
332control structures and have no effect on scoping.
333
334The C<foreach> loop defaults to scoping its index variable dynamically
335in the manner of C<local>.  However, if the index variable is
336prefixed with the keyword C<my>, or if there is already a lexical
337by that name in scope, then a new lexical is created instead.  Thus
338in the loop
339
340    for my $i (1, 2, 3) {
341        some_function();
342    }
343
344the scope of $i extends to the end of the loop, but not beyond it,
345rendering the value of $i inaccessible within C<some_function()>.
346
347Some users may wish to encourage the use of lexically scoped variables.
348As an aid to catching implicit uses to package variables,
349which are always global, if you say
350
351    use strict 'vars';
352
353then any variable mentioned from there to the end of the enclosing
354block must either refer to a lexical variable, be predeclared via
355C<our> or C<use vars>, or else must be fully qualified with the package name.
356A compilation error results otherwise.  An inner block may countermand
357this with C<no strict 'vars'>.
358
359A C<my> has both a compile-time and a run-time effect.  At compile
360time, the compiler takes notice of it.  The principle usefulness
361of this is to quiet C<use strict 'vars'>, but it is also essential
362for generation of closures as detailed in L<perlref>.  Actual
363initialization is delayed until run time, though, so it gets executed
364at the appropriate time, such as each time through a loop, for
365example.
366
367Variables declared with C<my> are not part of any package and are therefore
368never fully qualified with the package name.  In particular, you're not
369allowed to try to make a package variable (or other global) lexical:
370
371    my $pack::var;      # ERROR!  Illegal syntax
372    my $_;              # also illegal (currently)
373
374In fact, a dynamic variable (also known as package or global variables)
375are still accessible using the fully qualified C<::> notation even while a
376lexical of the same name is also visible:
377
378    package main;
379    local $x = 10;
380    my    $x = 20;
381    print "$x and $::x\n";
382
383That will print out C<20> and C<10>.
384
385You may declare C<my> variables at the outermost scope of a file
386to hide any such identifiers from the world outside that file.  This
387is similar in spirit to C's static variables when they are used at
388the file level.  To do this with a subroutine requires the use of
389a closure (an anonymous function that accesses enclosing lexicals).
390If you want to create a private subroutine that cannot be called
391from outside that block, it can declare a lexical variable containing
392an anonymous sub reference:
393
394    my $secret_version = '1.001-beta';
395    my $secret_sub = sub { print $secret_version };
396    &$secret_sub();
397
398As long as the reference is never returned by any function within the
399module, no outside module can see the subroutine, because its name is not in
400any package's symbol table.  Remember that it's not I<REALLY> called
401C<$some_pack::secret_version> or anything; it's just $secret_version,
402unqualified and unqualifiable.
403
404This does not work with object methods, however; all object methods
405have to be in the symbol table of some package to be found.  See
406L<perlref/"Function Templates"> for something of a work-around to
407this.
408
409=head2 Persistent Private Variables
410
411Just because a lexical variable is lexically (also called statically)
412scoped to its enclosing block, C<eval>, or C<do> FILE, this doesn't mean that
413within a function it works like a C static.  It normally works more
414like a C auto, but with implicit garbage collection. 
415
416Unlike local variables in C or C++, Perl's lexical variables don't
417necessarily get recycled just because their scope has exited.
418If something more permanent is still aware of the lexical, it will
419stick around.  So long as something else references a lexical, that
420lexical won't be freed--which is as it should be.  You wouldn't want
421memory being free until you were done using it, or kept around once you
422were done.  Automatic garbage collection takes care of this for you.
423
424This means that you can pass back or save away references to lexical
425variables, whereas to return a pointer to a C auto is a grave error.
426It also gives us a way to simulate C's function statics.  Here's a
427mechanism for giving a function private variables with both lexical
428scoping and a static lifetime.  If you do want to create something like
429C's static variables, just enclose the whole function in an extra block,
430and put the static variable outside the function but in the block.
431
432    {
433        my $secret_val = 0;
434        sub gimme_another {
435            return ++$secret_val;
436        }
437    }
438    # $secret_val now becomes unreachable by the outside
439    # world, but retains its value between calls to gimme_another
440
441If this function is being sourced in from a separate file
442via C<require> or C<use>, then this is probably just fine.  If it's
443all in the main program, you'll need to arrange for the C<my>
444to be executed early, either by putting the whole block above
445your main program, or more likely, placing merely a C<BEGIN>
446sub around it to make sure it gets executed before your program
447starts to run:
448
449    sub BEGIN {
450        my $secret_val = 0;
451        sub gimme_another {
452            return ++$secret_val;
453        }
454    }
455
456See L<perlmod/"Package Constructors and Destructors"> about the
457special triggered functions, C<BEGIN>, C<CHECK>, C<INIT> and C<END>.
458
459If declared at the outermost scope (the file scope), then lexicals
460work somewhat like C's file statics.  They are available to all
461functions in that same file declared below them, but are inaccessible
462from outside that file.  This strategy is sometimes used in modules
463to create private variables that the whole module can see.
464
465=head2 Temporary Values via local()
466
467B<WARNING>: In general, you should be using C<my> instead of C<local>, because
468it's faster and safer.  Exceptions to this include the global punctuation
469variables, filehandles and formats, and direct manipulation of the Perl
470symbol table itself.  Format variables often use C<local> though, as do
471other variables whose current value must be visible to called
472subroutines.
473
474Synopsis:
475
476    local $foo;                 # declare $foo dynamically local
477    local (@wid, %get);         # declare list of variables local
478    local $foo = "flurp";       # declare $foo dynamic, and init it
479    local @oof = @bar;          # declare @oof dynamic, and init it
480
481    local *FH;                  # localize $FH, @FH, %FH, &FH  ...
482    local *merlyn = *randal;    # now $merlyn is really $randal, plus
483                                #     @merlyn is really @randal, etc
484    local *merlyn = 'randal';   # SAME THING: promote 'randal' to *randal
485    local *merlyn = \$randal;   # just alias $merlyn, not @merlyn etc
486
487A C<local> modifies its listed variables to be "local" to the
488enclosing block, C<eval>, or C<do FILE>--and to I<any subroutine
489called from within that block>.  A C<local> just gives temporary
490values to global (meaning package) variables.  It does I<not> create
491a local variable.  This is known as dynamic scoping.  Lexical scoping
492is done with C<my>, which works more like C's auto declarations.
493
494If more than one variable is given to C<local>, they must be placed in
495parentheses.  All listed elements must be legal lvalues.  This operator works
496by saving the current values of those variables in its argument list on a
497hidden stack and restoring them upon exiting the block, subroutine, or
498eval.  This means that called subroutines can also reference the local
499variable, but not the global one.  The argument list may be assigned to if
500desired, which allows you to initialize your local variables.  (If no
501initializer is given for a particular variable, it is created with an
502undefined value.)  Commonly this is used to name the parameters to a
503subroutine.  Examples:
504
505    for $i ( 0 .. 9 ) {
506        $digits{$i} = $i;
507    }
508    # assume this function uses global %digits hash
509    parse_num();
510
511    # now temporarily add to %digits hash
512    if ($base12) {
513        # (NOTE: not claiming this is efficient!)
514        local %digits  = (%digits, 't' => 10, 'e' => 11);
515        parse_num();  # parse_num gets this new %digits!
516    }
517    # old %digits restored here
518
519Because C<local> is a run-time operator, it gets executed each time
520through a loop.  In releases of Perl previous to 5.0, this used more stack
521storage each time until the loop was exited.  Perl now reclaims the space
522each time through, but it's still more efficient to declare your variables
523outside the loop.
524
525A C<local> is simply a modifier on an lvalue expression.  When you assign to
526a C<local>ized variable, the C<local> doesn't change whether its list is viewed
527as a scalar or an array.  So
528
529    local($foo) = <STDIN>;
530    local @FOO = <STDIN>;
531
532both supply a list context to the right-hand side, while
533
534    local $foo = <STDIN>;
535
536supplies a scalar context.
537
538A note about C<local()> and composite types is in order.  Something
539like C<local(%foo)> works by temporarily placing a brand new hash in
540the symbol table.  The old hash is left alone, but is hidden "behind"
541the new one.
542
543This means the old variable is completely invisible via the symbol
544table (i.e. the hash entry in the C<*foo> typeglob) for the duration
545of the dynamic scope within which the C<local()> was seen.  This
546has the effect of allowing one to temporarily occlude any magic on
547composite types.  For instance, this will briefly alter a tied
548hash to some other implementation:
549
550    tie %ahash, 'APackage';
551    [...]
552    {
553       local %ahash;
554       tie %ahash, 'BPackage';
555       [..called code will see %ahash tied to 'BPackage'..]
556       {
557          local %ahash;
558          [..%ahash is a normal (untied) hash here..]
559       }
560    }
561    [..%ahash back to its initial tied self again..]
562
563As another example, a custom implementation of C<%ENV> might look
564like this:
565
566    {
567        local %ENV;
568        tie %ENV, 'MyOwnEnv';
569        [..do your own fancy %ENV manipulation here..]
570    }
571    [..normal %ENV behavior here..]
572
573It's also worth taking a moment to explain what happens when you
574C<local>ize a member of a composite type (i.e. an array or hash element).
575In this case, the element is C<local>ized I<by name>. This means that
576when the scope of the C<local()> ends, the saved value will be
577restored to the hash element whose key was named in the C<local()>, or
578the array element whose index was named in the C<local()>.  If that
579element was deleted while the C<local()> was in effect (e.g. by a
580C<delete()> from a hash or a C<shift()> of an array), it will spring
581back into existence, possibly extending an array and filling in the
582skipped elements with C<undef>.  For instance, if you say
583
584    %hash = ( 'This' => 'is', 'a' => 'test' );
585    @ary  = ( 0..5 );
586    {
587         local($ary[5]) = 6;
588         local($hash{'a'}) = 'drill';
589         while (my $e = pop(@ary)) {
590             print "$e . . .\n";
591             last unless $e > 3;
592         }
593         if (@ary) {
594             $hash{'only a'} = 'test';
595             delete $hash{'a'};
596         }
597    }
598    print join(' ', map { "$_ $hash{$_}" } sort keys %hash),".\n";
599    print "The array has ",scalar(@ary)," elements: ",
600          join(', ', map { defined $_ ? $_ : 'undef' } @ary),"\n";
601
602Perl will print
603
604    6 . . .
605    4 . . .
606    3 . . .
607    This is a test only a test.
608    The array has 6 elements: 0, 1, 2, undef, undef, 5
609
610The behavior of local() on non-existent members of composite
611types is subject to change in future.
612
613=head2 Lvalue subroutines
614
615B<WARNING>: Lvalue subroutines are still experimental and the implementation
616may change in future versions of Perl.
617
618It is possible to return a modifiable value from a subroutine.
619To do this, you have to declare the subroutine to return an lvalue.
620
621    my $val;
622    sub canmod : lvalue {
623        $val;
624    }
625    sub nomod {
626        $val;
627    }
628
629    canmod() = 5;   # assigns to $val
630    nomod()  = 5;   # ERROR
631
632The scalar/list context for the subroutine and for the right-hand
633side of assignment is determined as if the subroutine call is replaced
634by a scalar. For example, consider:
635
636    data(2,3) = get_data(3,4);
637
638Both subroutines here are called in a scalar context, while in:
639
640    (data(2,3)) = get_data(3,4);
641
642and in:
643
644    (data(2),data(3)) = get_data(3,4);
645
646all the subroutines are called in a list context.
647
648The current implementation does not allow arrays and hashes to be
649returned from lvalue subroutines directly.  You may return a
650reference instead.  This restriction may be lifted in future.
651
652=head2 Passing Symbol Table Entries (typeglobs)
653
654B<WARNING>: The mechanism described in this section was originally
655the only way to simulate pass-by-reference in older versions of
656Perl.  While it still works fine in modern versions, the new reference
657mechanism is generally easier to work with.  See below.
658
659Sometimes you don't want to pass the value of an array to a subroutine
660but rather the name of it, so that the subroutine can modify the global
661copy of it rather than working with a local copy.  In perl you can
662refer to all objects of a particular name by prefixing the name
663with a star: C<*foo>.  This is often known as a "typeglob", because the
664star on the front can be thought of as a wildcard match for all the
665funny prefix characters on variables and subroutines and such.
666
667When evaluated, the typeglob produces a scalar value that represents
668all the objects of that name, including any filehandle, format, or
669subroutine.  When assigned to, it causes the name mentioned to refer to
670whatever C<*> value was assigned to it.  Example:
671
672    sub doubleary {
673        local(*someary) = @_;
674        foreach $elem (@someary) {
675            $elem *= 2;
676        }
677    }
678    doubleary(*foo);
679    doubleary(*bar);
680
681Scalars are already passed by reference, so you can modify
682scalar arguments without using this mechanism by referring explicitly
683to C<$_[0]> etc.  You can modify all the elements of an array by passing
684all the elements as scalars, but you have to use the C<*> mechanism (or
685the equivalent reference mechanism) to C<push>, C<pop>, or change the size of
686an array.  It will certainly be faster to pass the typeglob (or reference).
687
688Even if you don't want to modify an array, this mechanism is useful for
689passing multiple arrays in a single LIST, because normally the LIST
690mechanism will merge all the array values so that you can't extract out
691the individual arrays.  For more on typeglobs, see
692L<perldata/"Typeglobs and Filehandles">.
693
694=head2 When to Still Use local()
695
696Despite the existence of C<my>, there are still three places where the
697C<local> operator still shines.  In fact, in these three places, you
698I<must> use C<local> instead of C<my>.
699
700=over
701
702=item 1. You need to give a global variable a temporary value, especially $_.
703
704The global variables, like C<@ARGV> or the punctuation variables, must be
705C<local>ized with C<local()>.  This block reads in F</etc/motd>, and splits
706it up into chunks separated by lines of equal signs, which are placed
707in C<@Fields>.
708
709    {
710        local @ARGV = ("/etc/motd");
711        local $/ = undef;
712        local $_ = <>; 
713        @Fields = split /^\s*=+\s*$/;
714    }
715
716It particular, it's important to C<local>ize $_ in any routine that assigns
717to it.  Look out for implicit assignments in C<while> conditionals.
718
719=item 2. You need to create a local file or directory handle or a local function.
720
721A function that needs a filehandle of its own must use
722C<local()> on a complete typeglob.   This can be used to create new symbol
723table entries:
724
725    sub ioqueue {
726        local  (*READER, *WRITER);    # not my!
727        pipe    (READER,  WRITER);    or die "pipe: $!";
728        return (*READER, *WRITER);
729    }
730    ($head, $tail) = ioqueue();
731
732See the Symbol module for a way to create anonymous symbol table
733entries.
734
735Because assignment of a reference to a typeglob creates an alias, this
736can be used to create what is effectively a local function, or at least,
737a local alias.
738
739    {
740        local *grow = \&shrink; # only until this block exists
741        grow();                 # really calls shrink()
742        move();                 # if move() grow()s, it shrink()s too
743    }
744    grow();                     # get the real grow() again
745
746See L<perlref/"Function Templates"> for more about manipulating
747functions by name in this way.
748
749=item 3. You want to temporarily change just one element of an array or hash.
750
751You can C<local>ize just one element of an aggregate.  Usually this
752is done on dynamics:
753
754    {
755        local $SIG{INT} = 'IGNORE';
756        funct();                            # uninterruptible
757    }
758    # interruptibility automatically restored here
759
760But it also works on lexically declared aggregates.  Prior to 5.005,
761this operation could on occasion misbehave.
762
763=back
764
765=head2 Pass by Reference
766
767If you want to pass more than one array or hash into a function--or
768return them from it--and have them maintain their integrity, then
769you're going to have to use an explicit pass-by-reference.  Before you
770do that, you need to understand references as detailed in L<perlref>.
771This section may not make much sense to you otherwise.
772
773Here are a few simple examples.  First, let's pass in several arrays
774to a function and have it C<pop> all of then, returning a new list
775of all their former last elements:
776
777    @tailings = popmany ( \@a, \@b, \@c, \@d );
778
779    sub popmany {
780        my $aref;
781        my @retlist = ();
782        foreach $aref ( @_ ) {
783            push @retlist, pop @$aref;
784        }
785        return @retlist;
786    }
787
788Here's how you might write a function that returns a
789list of keys occurring in all the hashes passed to it:
790
791    @common = inter( \%foo, \%bar, \%joe );
792    sub inter {
793        my ($k, $href, %seen); # locals
794        foreach $href (@_) {
795            while ( $k = each %$href ) {
796                $seen{$k}++;
797            }
798        }
799        return grep { $seen{$_} == @_ } keys %seen;
800    }
801
802So far, we're using just the normal list return mechanism.
803What happens if you want to pass or return a hash?  Well,
804if you're using only one of them, or you don't mind them
805concatenating, then the normal calling convention is ok, although
806a little expensive.
807
808Where people get into trouble is here:
809
810    (@a, @b) = func(@c, @d);
811or
812    (%a, %b) = func(%c, %d);
813
814That syntax simply won't work.  It sets just C<@a> or C<%a> and
815clears the C<@b> or C<%b>.  Plus the function didn't get passed
816into two separate arrays or hashes: it got one long list in C<@_>,
817as always.
818
819If you can arrange for everyone to deal with this through references, it's
820cleaner code, although not so nice to look at.  Here's a function that
821takes two array references as arguments, returning the two array elements
822in order of how many elements they have in them:
823
824    ($aref, $bref) = func(\@c, \@d);
825    print "@$aref has more than @$bref\n";
826    sub func {
827        my ($cref, $dref) = @_;
828        if (@$cref > @$dref) {
829            return ($cref, $dref);
830        } else {
831            return ($dref, $cref);
832        }
833    }
834
835It turns out that you can actually do this also:
836
837    (*a, *b) = func(\@c, \@d);
838    print "@a has more than @b\n";
839    sub func {
840        local (*c, *d) = @_;
841        if (@c > @d) {
842            return (\@c, \@d);
843        } else {
844            return (\@d, \@c);
845        }
846    }
847
848Here we're using the typeglobs to do symbol table aliasing.  It's
849a tad subtle, though, and also won't work if you're using C<my>
850variables, because only globals (even in disguise as C<local>s)
851are in the symbol table.
852
853If you're passing around filehandles, you could usually just use the bare
854typeglob, like C<*STDOUT>, but typeglobs references work, too.
855For example:
856
857    splutter(\*STDOUT);
858    sub splutter {
859        my $fh = shift;
860        print $fh "her um well a hmmm\n";
861    }
862
863    $rec = get_rec(\*STDIN);
864    sub get_rec {
865        my $fh = shift;
866        return scalar <$fh>;
867    }
868
869If you're planning on generating new filehandles, you could do this.
870Notice to pass back just the bare *FH, not its reference.
871
872    sub openit {
873        my $path = shift;
874        local *FH;
875        return open (FH, $path) ? *FH : undef;
876    }
877
878=head2 Prototypes
879
880Perl supports a very limited kind of compile-time argument checking
881using function prototyping.  If you declare
882
883    sub mypush (\@@)
884
885then C<mypush()> takes arguments exactly like C<push()> does.  The
886function declaration must be visible at compile time.  The prototype
887affects only interpretation of new-style calls to the function,
888where new-style is defined as not using the C<&> character.  In
889other words, if you call it like a built-in function, then it behaves
890like a built-in function.  If you call it like an old-fashioned
891subroutine, then it behaves like an old-fashioned subroutine.  It
892naturally falls out from this rule that prototypes have no influence
893on subroutine references like C<\&foo> or on indirect subroutine
894calls like C<&{$subref}> or C<< $subref->() >>.
895
896Method calls are not influenced by prototypes either, because the
897function to be called is indeterminate at compile time, since
898the exact code called depends on inheritance.
899
900Because the intent of this feature is primarily to let you define
901subroutines that work like built-in functions, here are prototypes
902for some other functions that parse almost exactly like the
903corresponding built-in.
904
905    Declared as                 Called as
906
907    sub mylink ($$)          mylink $old, $new
908    sub myvec ($$$)          myvec $var, $offset, 1
909    sub myindex ($$;$)       myindex &getstring, "substr"
910    sub mysyswrite ($$$;$)   mysyswrite $buf, 0, length($buf) - $off, $off
911    sub myreverse (@)        myreverse $a, $b, $c
912    sub myjoin ($@)          myjoin ":", $a, $b, $c
913    sub mypop (\@)           mypop @array
914    sub mysplice (\@$$@)     mysplice @array, @array, 0, @pushme
915    sub mykeys (\%)          mykeys %{$hashref}
916    sub myopen (*;$)         myopen HANDLE, $name
917    sub mypipe (**)          mypipe READHANDLE, WRITEHANDLE
918    sub mygrep (&@)          mygrep { /foo/ } $a, $b, $c
919    sub myrand ($)           myrand 42
920    sub mytime ()            mytime
921
922Any backslashed prototype character represents an actual argument
923that absolutely must start with that character.  The value passed
924as part of C<@_> will be a reference to the actual argument given
925in the subroutine call, obtained by applying C<\> to that argument.
926
927Unbackslashed prototype characters have special meanings.  Any
928unbackslashed C<@> or C<%> eats all remaining arguments, and forces
929list context.  An argument represented by C<$> forces scalar context.  An
930C<&> requires an anonymous subroutine, which, if passed as the first
931argument, does not require the C<sub> keyword or a subsequent comma.
932
933A C<*> allows the subroutine to accept a bareword, constant, scalar expression,
934typeglob, or a reference to a typeglob in that slot.  The value will be
935available to the subroutine either as a simple scalar, or (in the latter
936two cases) as a reference to the typeglob.  If you wish to always convert
937such arguments to a typeglob reference, use Symbol::qualify_to_ref() as
938follows:
939
940    use Symbol 'qualify_to_ref';
941
942    sub foo (*) {
943        my $fh = qualify_to_ref(shift, caller);
944        ...
945    }
946
947A semicolon separates mandatory arguments from optional arguments.
948It is redundant before C<@> or C<%>, which gobble up everything else.
949
950Note how the last three examples in the table above are treated
951specially by the parser.  C<mygrep()> is parsed as a true list
952operator, C<myrand()> is parsed as a true unary operator with unary
953precedence the same as C<rand()>, and C<mytime()> is truly without
954arguments, just like C<time()>.  That is, if you say
955
956    mytime +2;
957
958you'll get C<mytime() + 2>, not C<mytime(2)>, which is how it would be parsed
959without a prototype.
960
961The interesting thing about C<&> is that you can generate new syntax with it,
962provided it's in the initial position:
963
964    sub try (&@) {
965        my($try,$catch) = @_;
966        eval { &$try };
967        if ($@) {
968            local $_ = $@;
969            &$catch;
970        }
971    }
972    sub catch (&) { $_[0] }
973
974    try {
975        die "phooey";
976    } catch {
977        /phooey/ and print "unphooey\n";
978    };
979
980That prints C<"unphooey">.  (Yes, there are still unresolved
981issues having to do with visibility of C<@_>.  I'm ignoring that
982question for the moment.  (But note that if we make C<@_> lexically
983scoped, those anonymous subroutines can act like closures... (Gee,
984is this sounding a little Lispish?  (Never mind.))))
985
986And here's a reimplementation of the Perl C<grep> operator:
987
988    sub mygrep (&@) {
989        my $code = shift;
990        my @result;
991        foreach $_ (@_) {
992            push(@result, $_) if &$code;
993        }
994        @result;
995    }
996
997Some folks would prefer full alphanumeric prototypes.  Alphanumerics have
998been intentionally left out of prototypes for the express purpose of
999someday in the future adding named, formal parameters.  The current
1000mechanism's main goal is to let module writers provide better diagnostics
1001for module users.  Larry feels the notation quite understandable to Perl
1002programmers, and that it will not intrude greatly upon the meat of the
1003module, nor make it harder to read.  The line noise is visually
1004encapsulated into a small pill that's easy to swallow.
1005
1006It's probably best to prototype new functions, not retrofit prototyping
1007into older ones.  That's because you must be especially careful about
1008silent impositions of differing list versus scalar contexts.  For example,
1009if you decide that a function should take just one parameter, like this:
1010
1011    sub func ($) {
1012        my $n = shift;
1013        print "you gave me $n\n";
1014    }
1015
1016and someone has been calling it with an array or expression
1017returning a list:
1018
1019    func(@foo);
1020    func( split /:/ );
1021
1022Then you've just supplied an automatic C<scalar> in front of their
1023argument, which can be more than a bit surprising.  The old C<@foo>
1024which used to hold one thing doesn't get passed in.  Instead,
1025C<func()> now gets passed in a C<1>; that is, the number of elements
1026in C<@foo>.  And the C<split> gets called in scalar context so it
1027starts scribbling on your C<@_> parameter list.  Ouch!
1028
1029This is all very powerful, of course, and should be used only in moderation
1030to make the world a better place.
1031
1032=head2 Constant Functions
1033
1034Functions with a prototype of C<()> are potential candidates for
1035inlining.  If the result after optimization and constant folding
1036is either a constant or a lexically-scoped scalar which has no other
1037references, then it will be used in place of function calls made
1038without C<&>.  Calls made using C<&> are never inlined.  (See
1039F<constant.pm> for an easy way to declare most constants.)
1040
1041The following functions would all be inlined:
1042
1043    sub pi ()           { 3.14159 }             # Not exact, but close.
1044    sub PI ()           { 4 * atan2 1, 1 }      # As good as it gets,
1045                                                # and it's inlined, too!
1046    sub ST_DEV ()       { 0 }
1047    sub ST_INO ()       { 1 }
1048
1049    sub FLAG_FOO ()     { 1 << 8 }
1050    sub FLAG_BAR ()     { 1 << 9 }
1051    sub FLAG_MASK ()    { FLAG_FOO | FLAG_BAR }
1052
1053    sub OPT_BAZ ()      { not (0x1B58 & FLAG_MASK) }
1054    sub BAZ_VAL () {
1055        if (OPT_BAZ) {
1056            return 23;
1057        }
1058        else {
1059            return 42;
1060        }
1061    }
1062
1063    sub N () { int(BAZ_VAL) / 3 }
1064    BEGIN {
1065        my $prod = 1;
1066        for (1..N) { $prod *= $_ }
1067        sub N_FACTORIAL () { $prod }
1068    }
1069
1070If you redefine a subroutine that was eligible for inlining, you'll get
1071a mandatory warning.  (You can use this warning to tell whether or not a
1072particular subroutine is considered constant.)  The warning is
1073considered severe enough not to be optional because previously compiled
1074invocations of the function will still be using the old value of the
1075function.  If you need to be able to redefine the subroutine, you need to
1076ensure that it isn't inlined, either by dropping the C<()> prototype
1077(which changes calling semantics, so beware) or by thwarting the
1078inlining mechanism in some other way, such as
1079
1080    sub not_inlined () {
1081        23 if $];
1082    }
1083
1084=head2 Overriding Built-in Functions
1085
1086Many built-in functions may be overridden, though this should be tried
1087only occasionally and for good reason.  Typically this might be
1088done by a package attempting to emulate missing built-in functionality
1089on a non-Unix system.
1090
1091Overriding may be done only by importing the name from a
1092module--ordinary predeclaration isn't good enough.  However, the
1093C<use subs> pragma lets you, in effect, predeclare subs
1094via the import syntax, and these names may then override built-in ones:
1095
1096    use subs 'chdir', 'chroot', 'chmod', 'chown';
1097    chdir $somewhere;
1098    sub chdir { ... }
1099
1100To unambiguously refer to the built-in form, precede the
1101built-in name with the special package qualifier C<CORE::>.  For example,
1102saying C<CORE::open()> always refers to the built-in C<open()>, even
1103if the current package has imported some other subroutine called
1104C<&open()> from elsewhere.  Even though it looks like a regular
1105function call, it isn't: you can't take a reference to it, such as
1106the incorrect C<\&CORE::open> might appear to produce.
1107
1108Library modules should not in general export built-in names like C<open>
1109or C<chdir> as part of their default C<@EXPORT> list, because these may
1110sneak into someone else's namespace and change the semantics unexpectedly.
1111Instead, if the module adds that name to C<@EXPORT_OK>, then it's
1112possible for a user to import the name explicitly, but not implicitly.
1113That is, they could say
1114
1115    use Module 'open';
1116
1117and it would import the C<open> override.  But if they said
1118
1119    use Module;
1120
1121they would get the default imports without overrides.
1122
1123The foregoing mechanism for overriding built-in is restricted, quite
1124deliberately, to the package that requests the import.  There is a second
1125method that is sometimes applicable when you wish to override a built-in
1126everywhere, without regard to namespace boundaries.  This is achieved by
1127importing a sub into the special namespace C<CORE::GLOBAL::>.  Here is an
1128example that quite brazenly replaces the C<glob> operator with something
1129that understands regular expressions.
1130
1131    package REGlob;
1132    require Exporter;
1133    @ISA = 'Exporter';
1134    @EXPORT_OK = 'glob';
1135
1136    sub import {
1137        my $pkg = shift;
1138        return unless @_;
1139        my $sym = shift;
1140        my $where = ($sym =~ s/^GLOBAL_// ? 'CORE::GLOBAL' : caller(0));
1141        $pkg->export($where, $sym, @_);
1142    }
1143
1144    sub glob {
1145        my $pat = shift;
1146        my @got;
1147        local *D;
1148        if (opendir D, '.') {
1149            @got = grep /$pat/, readdir D;
1150            closedir D;   
1151        }
1152        return @got;
1153    }
1154    1;
1155
1156And here's how it could be (ab)used:
1157
1158    #use REGlob 'GLOBAL_glob';      # override glob() in ALL namespaces
1159    package Foo;
1160    use REGlob 'glob';              # override glob() in Foo:: only
1161    print for <^[a-z_]+\.pm\$>;     # show all pragmatic modules
1162
1163The initial comment shows a contrived, even dangerous example.
1164By overriding C<glob> globally, you would be forcing the new (and
1165subversive) behavior for the C<glob> operator for I<every> namespace,
1166without the complete cognizance or cooperation of the modules that own
1167those namespaces.  Naturally, this should be done with extreme caution--if
1168it must be done at all.
1169
1170The C<REGlob> example above does not implement all the support needed to
1171cleanly override perl's C<glob> operator.  The built-in C<glob> has
1172different behaviors depending on whether it appears in a scalar or list
1173context, but our C<REGlob> doesn't.  Indeed, many perl built-in have such
1174context sensitive behaviors, and these must be adequately supported by
1175a properly written override.  For a fully functional example of overriding
1176C<glob>, study the implementation of C<File::DosGlob> in the standard
1177library.
1178
1179=head2 Autoloading
1180
1181If you call a subroutine that is undefined, you would ordinarily
1182get an immediate, fatal error complaining that the subroutine doesn't
1183exist.  (Likewise for subroutines being used as methods, when the
1184method doesn't exist in any base class of the class's package.)
1185However, if an C<AUTOLOAD> subroutine is defined in the package or
1186packages used to locate the original subroutine, then that
1187C<AUTOLOAD> subroutine is called with the arguments that would have
1188been passed to the original subroutine.  The fully qualified name
1189of the original subroutine magically appears in the global $AUTOLOAD
1190variable of the same package as the C<AUTOLOAD> routine.  The name
1191is not passed as an ordinary argument because, er, well, just
1192because, that's why...
1193
1194Many C<AUTOLOAD> routines load in a definition for the requested
1195subroutine using eval(), then execute that subroutine using a special
1196form of goto() that erases the stack frame of the C<AUTOLOAD> routine
1197without a trace.  (See the source to the standard module documented
1198in L<AutoLoader>, for example.)  But an C<AUTOLOAD> routine can
1199also just emulate the routine and never define it.   For example,
1200let's pretend that a function that wasn't defined should just invoke
1201C<system> with those arguments.  All you'd do is:
1202
1203    sub AUTOLOAD {
1204        my $program = $AUTOLOAD;
1205        $program =~ s/.*:://;
1206        system($program, @_);
1207    }
1208    date();
1209    who('am', 'i');
1210    ls('-l');
1211
1212In fact, if you predeclare functions you want to call that way, you don't
1213even need parentheses:
1214
1215    use subs qw(date who ls);
1216    date;
1217    who "am", "i";
1218    ls -l;
1219
1220A more complete example of this is the standard Shell module, which
1221can treat undefined subroutine calls as calls to external programs.
1222
1223Mechanisms are available to help modules writers split their modules
1224into autoloadable files.  See the standard AutoLoader module
1225described in L<AutoLoader> and in L<AutoSplit>, the standard
1226SelfLoader modules in L<SelfLoader>, and the document on adding C
1227functions to Perl code in L<perlxs>.
1228
1229=head2 Subroutine Attributes
1230
1231A subroutine declaration or definition may have a list of attributes
1232associated with it.  If such an attribute list is present, it is
1233broken up at space or colon boundaries and treated as though a
1234C<use attributes> had been seen.  See L<attributes> for details
1235about what attributes are currently supported.
1236Unlike the limitation with the obsolescent C<use attrs>, the
1237C<sub : ATTRLIST> syntax works to associate the attributes with
1238a pre-declaration, and not just with a subroutine definition.
1239
1240The attributes must be valid as simple identifier names (without any
1241punctuation other than the '_' character).  They may have a parameter
1242list appended, which is only checked for whether its parentheses ('(',')')
1243nest properly.
1244
1245Examples of valid syntax (even though the attributes are unknown):
1246
1247    sub fnord (&\%) : switch(10,foo(7,3))  :  expensive ;
1248    sub plugh () : Ugly('\(") :Bad ;
1249    sub xyzzy : _5x5 { ... }
1250
1251Examples of invalid syntax:
1252
1253    sub fnord : switch(10,foo() ; # ()-string not balanced
1254    sub snoid : Ugly('(') ;       # ()-string not balanced
1255    sub xyzzy : 5x5 ;             # "5x5" not a valid identifier
1256    sub plugh : Y2::north ;       # "Y2::north" not a simple identifier
1257    sub snurt : foo + bar ;       # "+" not a colon or space
1258
1259The attribute list is passed as a list of constant strings to the code
1260which associates them with the subroutine.  In particular, the second example
1261of valid syntax above currently looks like this in terms of how it's
1262parsed and invoked:
1263
1264    use attributes __PACKAGE__, \&plugh, q[Ugly('\(")], 'Bad';
1265
1266For further details on attribute lists and their manipulation,
1267see L<attributes>.
1268
1269=head1 SEE ALSO
1270
1271See L<perlref/"Function Templates"> for more about references and closures.
1272See L<perlxs> if you'd like to learn about calling C subroutines from Perl. 
1273See L<perlembed> if you'd like to learn about calling PErl subroutines from C. 
1274See L<perlmod> to learn about bundling up your functions in separate files.
1275See L<perlmodlib> to learn what library modules come standard on your system.
1276See L<perltoot> to learn how to make object method calls.
Note: See TracBrowser for help on using the repository browser.